Maximum and Minimum Skress

Week 9:
Transformation of
stresses and strains

Principal and maximum stresses
Principal stresses in 3D
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=PFL  Transformation of stress and strain

Principal and maximum stresses

= From the equations for normal and shear stress under an arbitrary angle, we
can see that there are angles of maximum and minimum shear and normal
stresses

= We can calculate these angles by setting the respective derivatives to zero
= For the maximum/minimum of the normal stresses we get:

2

= This is the principal stress and the angle under which it is is the principal axis



EPFL Transformation to

! "\ ' principal stresses
0_\.-1 ol 0, ]
L — \(/ il Assume an element is under a
o, LY x /6,, combination of normal and shear
"—l | X stresses when looked at in a specific
W — L \ coordinate system.
' lc_ o There exists a

in which the description of the

Stresses in given

coordinate system Principal stresses same stress eleme_nt will
_ , with the shear
stresses being zero.

The normal stresses expressed in this

rotated coordinate system are the

. One normal stress is
the maximum normal stress. The other
normal stress is the minimal stress

The axes of this rotated coordinate
system are the :




=P7L  Principal and maximum shear stresses

2

+ 72

xy

= For the plane where the shear stress is maximum we get:
o,—0

T =
min 2

= The absolute value of the maximum shear stress is the same for the
axis of maximum and the axis of minimum shear stress. This is
understandable, since the material doesn’t care if it is “sheared left or
right”

= |n the principal axis, there is nor shear stress

Y

» In the axis of maximum shear stress, there is also a normal stress
(average normal stress)
_0x10,

098_ 5
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Normal Stress

Shear stress

'I?/Igg)g(li;um On = 5 tan e 0s = = tan~! [ — = vy
+ 2 o o 2
g a. g — 0 —
Max/Min Olp= 5k \/(”2“’> +72, Tmaz,min = £ <u> +72,
Value 2

“Other” stress
at that angle

Oz + Oyy

Oxy’ — Oquv —




Mohr’s circle of stress

The symmetry in the equations for the shear
stress and the normal stress suggest that
there is an easy way to describe their
relationship, and to calculate the normal and
shear stresses in any direction

Georg Fantner

We plot for each direction we’ve calculated
the o; and t; on a coordinate system of o
and t

We know form our calculations:

There are directions where o is
maximum or minimum and =0

There are also directions where t is
maximum or minimum and 0=(0,+0,)/2

What do we get if we draw all possible
combinations on here?
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What we can learn from
Mohr’s circle of stress

0, is the maximum normal stress, 0, is the
minimum normal stress, and there are no shear
stresses in that direction

The largest shear stress is equal to the radius of the

circle and in the direction of max shear stress we
have a normal stress of 0,,=(0+0,)/2

If o,+0,=0, then there is an axis of pure shear
stress

The sum of all stresses in any two mutually
orthogonal directions planes is constant

~

Georg Fantner



=PFL  Transformation of plane strain

» Since both stress and strain are tensors, we can treat the coordinate
transform of the strain in a similar way as that for the stress

T =Q-7.-QT
= The transformation equations for plane strain then are:

£yt = i ;gy =ty cos(260) + % sin(20)
Ey = i —;—sy _ e ; “y cos(20) — 7 Y sin(20)

Yary = — (€4 — €y) sIn(20) + vz, cos(260)




=P7L  Principal strains

= These formulas are very similar to the ones we’ve derived for stress

= We can therefore again show that we can plot all the possible combinations of
normal strain and shear strain in a graph with axes €,y/2, and obtain a circle:

Mohr’s circle of strain

= By setting the derivatives of transformation expressions for normal strain and
shear strain with respect to 8 to zero, we can again calculate the principal

strains:

(x )0 = g1&e9 =

mn

Lgy

€x—|—€yi €
2

2

) +(5)

= At the principal angle:

tan(20) =

Yy
Egx
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a0 = (5

9

Mohr’s circle of strainin 2D

10
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Transformation of plane stress & strain in 2D

Summary

Plane stress Plane strain

max normal

max shear

Angle max
normal

Angle max
shear
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=F7L Principle stresses in 3D

= The stress tensor is a symmetric 3x3 tensor that can be written in different
coordinate systems.

= From linear algebra we know that one coordinate system exists in which the tensor
only has non-zero elements in its diagonal (everywhere else the components are
zero).

o T, T. . . Oy Taly' Tl o 0O O
PR T Y T2\ in principal coord. r Y vz 1
T =\ Tyz Oy Tyz — Tyw Oy Ty | =10 o2 0
Tox Tzy Oz Torw!  Taty! Oz 0 0 o3

= The axes of this coordinate system are the principal axes
= The elements in the diagonal are the principal stresses

= WWhen the stress tensor is represented in its principal coordinate system, there are
no shear stresses, only normal stresses
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Principle stresses in 3D ’

Calculating the principal stresses

= Calculating the principal stresses equal finding the eigenvalues and eigenvectors
of the stress tensor: R
det (5 - A?) —0

= When we know the 3D stress state in our reference coordinate system, we can
calculate the principal stresses by calculating the roots of the characteristic

equation:
0'3—110'2—|—120'—13:0

= With |1, |2, |3: I

= Ozt oy +o0,

— 2 2 2
I, = OxO0y + 040, +0yo, — Toy = Toz = Tyz
2 2 2

= |4, I I3 are the stress invariants.
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Principle stresses in 3D

= The stress invariants in the principal axes are then:

Il = O'1+O'Q+O'3
Iy = 0109+ 0103+ 0203
Is = 010203

= With the eigenvalues of the 3D stress tensor we can then calculate the
Eigenvectors. The Eigenvectors point in the direction of the principal axes of
the stress state.

14
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Mohr’s circle in 3D

The stress tensor is dependent only on
the stress state, and not on our initial
choice of coordinate system.

We've previously learned to draw the
« O- > Mohr’s circle in 2D. Those were in
2
essence projection of the 3D stress state

= o, > in 2D
T To get to Mohr’s circle in 3D, we can
therefore draw three individual Mohr’s

circles for the planes x-y, x-z, and y-z, as
long as we know the principal streSses
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T+ T

v'z, “abs max

Mohr’s circle in 3D-
Maximum shear stress

Normal
Stress, o

We can use Mohr’s circle in 3D to
evaluate what the maximum shear
stresses are in the 3 principal

01— 02

Tmaz,3 = T 5 directions
Tmax,2 — :l:o-l ; 73
Tmax,1 — :|:O2 ; 73

Comment: Sometimes we use the opposite numbering convention 0;<0,<0;




=PFL — Mohr’s circle in 3D - 3D state of

= 3D state of plane stress — 2 positive stresses:

17

plane stress

K

negative:




EPFL Example: Triaxial stress
state - NOT plane stress

Calculate the maximum principal
stresses and maximum shear

20 40 —30 ist;tesses for the stress state on the
T =40 30 25 | MPa Sl
—-30 25 -10

Solution:
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600000

450600

— - st / .
R — Example: Triaxial stress
S T state - NOT plane stress

Va " ezl

/ 500606

/

~800000-
Stress (MPa)

o, =65.3MPa

o, =26.5MPa

o, =—-51.8MPa

T .. =1/2(65.3+51.8)
=58.5MPa



=PrL

Shear (MPa)

Tz Tabs mu.r=5 8.5

02=26.5
0= -51.8._ / 6,=63.5
Normal
Stress, o (MPa)

o, =65.3MPa

o, =26.5MPa

o, =—-51.8MPa

T .. =1/2(65.3+51.8)
=58.5MPa

Example: Triaxial stress
state - NOT plane stress




