

Maximum and Minimum Stress

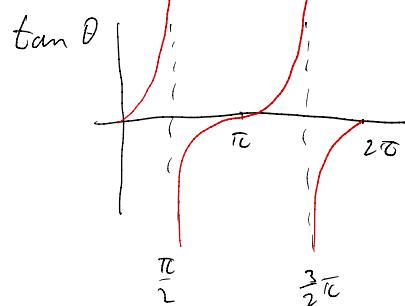
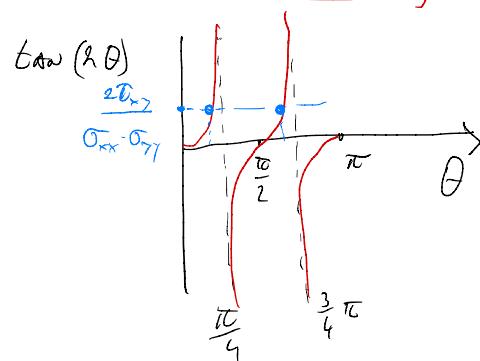
Week 9: Transformation of stresses and strains

1. Principal and maximum stresses
2. Principal stresses in 3D

$$\sigma_x' = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

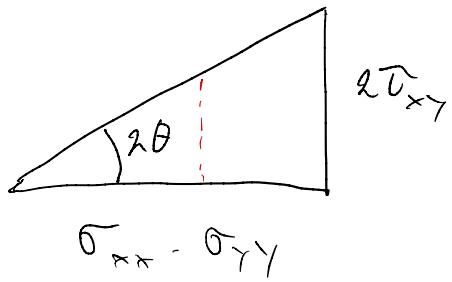
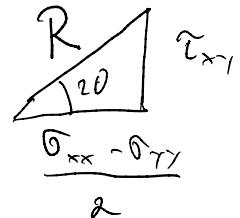
$$\frac{d\sigma_x'}{d\theta} = -(\sigma_{xx} - \sigma_{yy}) \sin(2\theta) + 2\tau_{xy} \cos 2\theta = 0$$

$$\frac{\sin 2\theta}{\cos 2\theta} = \tan(2\theta) = \frac{2\tau_{xy}}{(\sigma_{xx} - \sigma_{yy})}$$



THE ANGLES FOR MAXIMUM AND MINIMUM NORMAL STRESS
ARE PERPENDICULAR TO EACH OTHER

□ Express $\tan 2\theta = \frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}}$ geometrically



□ Calculate the following expressions:

$$R = \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$

$$\cos 2\theta = \frac{\sigma_{xx} - \sigma_{yy}}{2R}$$

$$\sin 2\theta = \frac{\tau_{xy}}{R}$$

$$\sigma_{x'}^{\text{MAX}} := \sigma_1 = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \frac{\sigma_{xx} - \sigma_{yy}}{2} \cdot \frac{\sigma_{xx} - \sigma_{yy}}{2R} + \frac{\tau_{xy}^2}{R^2} \quad \Big| * \frac{R}{R}$$

$$\begin{aligned} &= \frac{\sigma_{xx} + \sigma_{yy}}{2} + \frac{(\sigma_{xx} - \sigma_{yy})^2 R}{4R^2} + \frac{\tau_{xy}^2 R}{R^2} \quad \Big| R^2 = \frac{(\sigma_{xx} - \sigma_{yy})^2}{2} + \tau_{xy}^2 \\ &= \frac{\sigma_{xx} + \sigma_{yy}}{2} + \left[\frac{(\sigma_{xx} - \sigma_{yy})^2}{2} + \tau_{xy}^2 \right] R \end{aligned}$$

$$\boxed{\sigma_1 = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \sqrt{\frac{(\sigma_{xx} - \sigma_{yy})^2}{2} + \tau_{xy}^2}}$$

WE REMEMBER:

$$\sigma_{xx} + \sigma_{yy} = \sigma_{xx'} + \sigma_{yy'} = \sigma_1 + \sigma_2$$

$$\sigma_2 = \frac{\sigma_{xx} + \sigma_{yy}}{2} - \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_{1,2} = \frac{\sigma_{xx} + \sigma_{yy}}{2} \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$

$\sigma_{\text{AVER AFG}}$

SHEAR STRESSES AT PRINCIPAL ANGLES:

$$\tilde{\tau}_{xy} = -\frac{\sigma_{xx} - \sigma_{yy}}{2} \sin 2\theta + \tilde{\tau}_{xy} \cos 2\theta$$

$$= -\frac{\sigma_{xx} - \sigma_{yy}}{2} \frac{\tilde{\tau}_{xy}}{R} + \tilde{\tau}_{xy} \frac{\frac{\sigma_{xx} - \sigma_{yy}}{2R}}{R} = 0$$

⇒ @ $\theta_{1,2} \Rightarrow \tilde{\tau}_{xy} = 0$

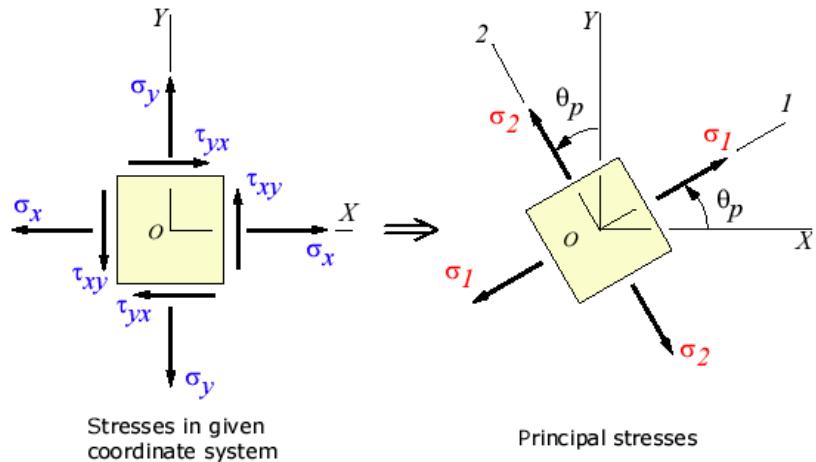
Transformation of stress and strain

Principal and maximum stresses

- From the equations for normal and shear stress under an arbitrary angle, we can see that there are angles of maximum and minimum shear and normal stresses
- We can calculate these angles by setting the respective derivatives to zero
- For the maximum/minimum of the normal stresses we get:

$$(\sigma_x')_{\substack{\max \\ \min}} = \sigma_{1 \text{ or } 2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

- This is the *principal stress* and the angle under which it is is the *principal axis*



Transformation to principal stresses

- Assume an element is under a combination of normal and shear stresses when looked at in a specific coordinate system.
- There exists a **rotated coordinate system** in which the description of the same stress element will **result in only normal stresses**, with the shear stresses being zero.
- The normal stresses expressed in this rotated coordinate system are the ***principal stresses***. One normal stress is the maximum normal stress. The other normal stress is the minimal stress
- The axes of this rotated coordinate system are the ***principal axes***.

- For the plane where the shear stress is maximum we get:

$$\tau_{\substack{\max \\ \min}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}$$

- The absolute value of the maximum shear stress is the same for the axis of maximum and the axis of minimum shear stress. This is understandable, since the material doesn't care if it is "sheared left or right"
- In the principal axis, there is no shear stress
- In the axis of maximum shear stress, there is also a normal stress (average normal stress)

$$\sigma_{\theta_s} = \frac{\sigma_x + \sigma_y}{2}$$

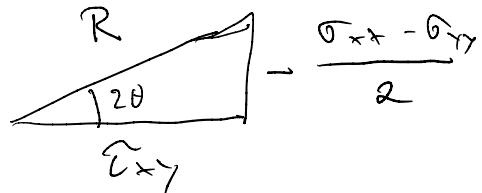
MAXIMUM SHEAR STRESSES:

$$\frac{d \tilde{\tau}_{xy}}{d \theta} = 0$$

$$-(\tilde{\sigma}_{xx} - \tilde{\sigma}_{yy}) \cos(2\theta) - 2\tilde{\tau}_{xy} \sin(2\theta) = 0$$

$$\frac{\sin 2\theta}{\cos 2\theta} = \tan 2\theta = -\frac{\tilde{\sigma}_{xx} - \tilde{\sigma}_{yy}}{2\tilde{\tau}_{xy}} \Rightarrow 2 \text{ solutions}$$

⇒ Solve graphically:



$$R = \sqrt{\left(\frac{\tilde{\sigma}_{xx} - \tilde{\sigma}_{yy}}{2}\right)^2 + \tilde{\tau}_{xy}^2}$$

$$\sin 2\theta = -\frac{\tilde{\sigma}_{xx} - \tilde{\sigma}_{yy}}{2R}$$

$$\cos 2\theta = \frac{\tilde{\tau}_{xy}}{R}$$

⇒ SUBSTITUTE IN TO TRANSFORMATION EQUATION:

$$\tilde{\epsilon}_{xy} = -\frac{\sigma_x - \sigma_y}{2} \cdot \left(-\frac{\sigma_{xx} - \sigma_{yy}}{2R} \right) + \frac{\tilde{\epsilon}_{xy}^2}{R^2}$$

$$= \frac{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2} \right)^2 + \tilde{\epsilon}_{xy}^2}{R} = \frac{R}{R^2} = R$$

$$\tilde{\epsilon}^{\max, \min} = \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2} \right)^2 + \tilde{\epsilon}_{xy}^2}$$

NORMAL STRESSES AT THE ANGLES WHERE $\tilde{\tau}$ is MAX/MIN

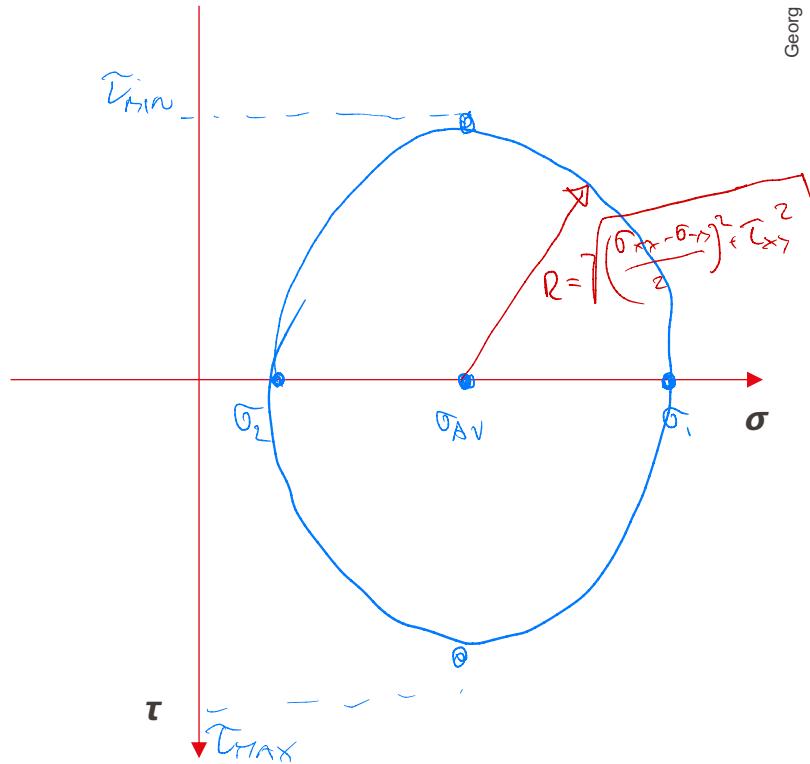
$$\tilde{\sigma}_{xx} = \frac{\tilde{\sigma}_{xx} + \tilde{\sigma}_{yy}}{2} + \frac{\tilde{\sigma}_{xx} - \tilde{\sigma}_{yy}}{2} \frac{\tilde{\tau}_{xy}}{R} - \tilde{\tau}_{xy} \frac{\tilde{\sigma}_{xx} - \tilde{\sigma}_{yy}}{2R}$$

$$\tilde{\sigma}_{xx} := \tilde{\sigma}_{\theta_s} = \frac{\tilde{\sigma}_{xx} + \tilde{\sigma}_{yy}}{2} = \tilde{\sigma}_{av}$$

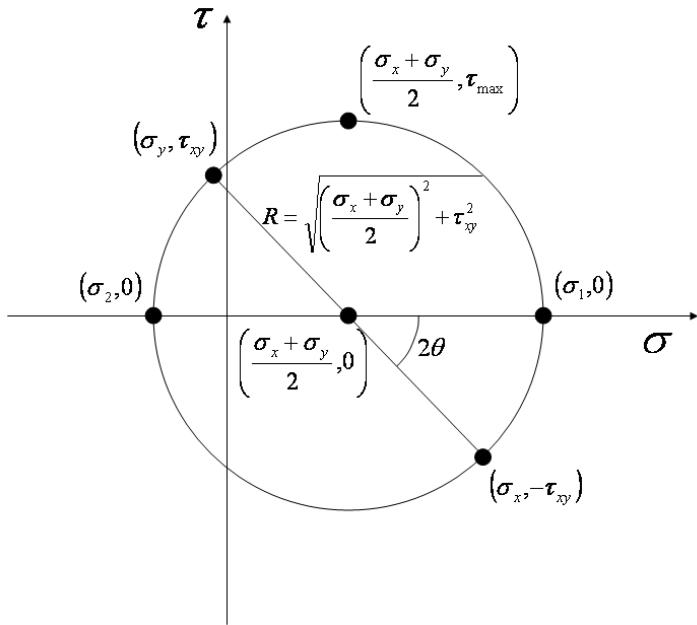
	Normal Stress	Shear stress
Angle Maximum	$\theta_N = \frac{1}{2} \tan^{-1} \left(\frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}} \right)$	$\theta_S = \frac{1}{2} \tan^{-1} \left(-\frac{\sigma_{xx} - \sigma_{yy}}{2\tau_{xy}} \right)$
Max/Min Value	$\sigma_{1,2} = \frac{\sigma_{xx} + \sigma_{yy}}{2} \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2} \right)^2 + \tau_{xy}^2}$	$\tau_{max,min} = \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2} \right)^2 + \tau_{xy}^2}$
“Other” stress at that angle	$\tau_{xy} = 0$	$\sigma_{xy'} = \sigma_{av} = \frac{\sigma_{xx} + \sigma_{yy}}{2}$

Mohr's circle of stress

- The symmetry in the equations for the shear stress and the normal stress suggest that there is an easy way to describe their relationship, and to calculate the normal and shear stresses in any direction
- We plot for each direction we've calculated the σ_i and τ_i on a coordinate system of σ and τ
- We know from our calculations:
 - There are directions where σ is maximum or minimum and $\tau=0$
 - There are also directions where τ is maximum or minimum and $\sigma=(\sigma_x+\sigma_y)/2$
- What do we get if we draw all possible combinations on here?



What we can learn from Mohr's circle of stress



σ_1 is the maximum normal stress, σ_2 is the minimum normal stress, and there are no shear stresses in that direction

The largest shear stress is equal to the radius of the circle and in the direction of max shear stress we have a normal stress of $\sigma_{av} = (\sigma_1 + \sigma_2)/2$

If $\sigma_x + \sigma_y = 0$, then there is an axis of pure shear stress

The sum of all stresses in any two mutually orthogonal directions planes is constant

- Since both stress and strain are tensors, we can treat the coordinate transform of the strain in a similar way as that for the stress

$$\overleftrightarrow{\varepsilon}' = \mathbf{Q} \cdot \overleftrightarrow{\varepsilon} \cdot \mathbf{Q}^T$$

- The transformation equations for plane strain then are:

$$\varepsilon_{x'} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos(2\theta) + \frac{\gamma_{xy}}{2} \sin(2\theta)$$

$$\varepsilon_{y'} = \frac{\varepsilon_x + \varepsilon_y}{2} - \frac{\varepsilon_x - \varepsilon_y}{2} \cos(2\theta) - \frac{\gamma_{xy}}{2} \sin(2\theta)$$

$$\gamma_{x'y'} = -(\varepsilon_x - \varepsilon_y) \sin(2\theta) + \gamma_{xy} \cos(2\theta)$$

- These formulas are very similar to the ones we've derived for stress
- We can therefore again show that we can plot all the possible combinations of normal strain and shear strain in a graph with axes $\varepsilon, \gamma/2$, and obtain a circle:
Mohr's circle of strain
- By setting the derivatives of transformation expressions for normal strain and shear strain with respect to θ to zero, we can again calculate the principal strains:

$$(\varepsilon_{x'})_{\min}^{\max} = \varepsilon_1 \& \varepsilon_2 = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

- At the principal angle:

$$\tan(2\theta) = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$

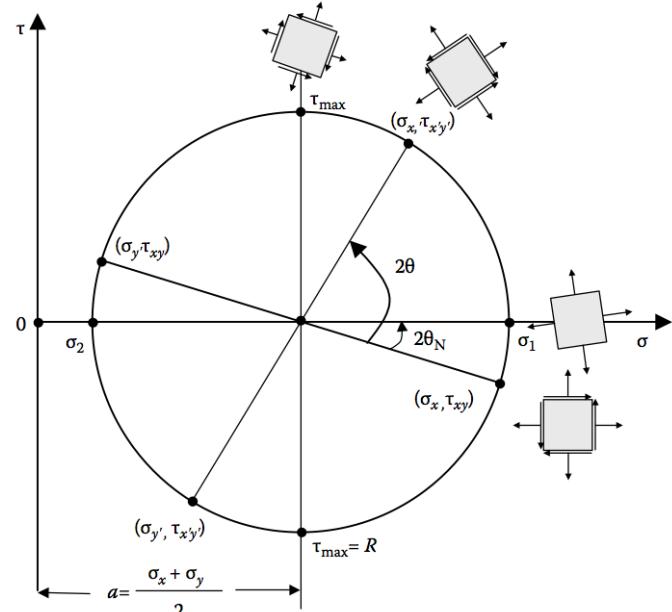
Mohr's circle of strain in 2D

$$(\varepsilon_{av}, 0) = \left(\frac{\varepsilon_x - \varepsilon_y}{2}, 0 \right)$$

$$R = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2} \right)^2 + \left(\frac{\gamma_{xy}}{2} \right)^2}$$

$$\left(\frac{\gamma_{xy}}{2} \right)_{max} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2} \right)^2 + \left(\frac{\gamma_{xy}}{2} \right)^2}$$

$$(\varepsilon_{x'})_{min}^{max} = \varepsilon_1 \& \varepsilon_2 = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2} \right)^2 + \left(\frac{\gamma_{xy}}{2} \right)^2}$$



Summary

	Plane stress	Plane strain
max normal	$(\sigma_{x'})_{min}^{max} = \sigma_{1\&2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	$(\varepsilon_{x'})_{min}^{max} = \varepsilon_{1\&2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$
max shear	$(\tau_{xy})_{min}^{max} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	$\left(\frac{\gamma_{xy}}{2}\right)_{max} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$
Angle max normal	$\theta_N = \frac{1}{2} \tan^{-1} \left(\frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}} \right)$	$\theta_N = \frac{1}{2} \tan^{-1} \left(\frac{\gamma_{xy}}{\varepsilon_{xx} - \varepsilon_{yy}} \right)$
Angle max shear	$\theta_S = \frac{1}{2} \tan^{-1} \left(-\frac{\sigma_{xx} - \sigma_{yy}}{2\tau_{xy}} \right)$	$\theta_N = \frac{1}{2} \tan^{-1} \left(-\frac{\varepsilon_{xx} - \varepsilon_{yy}}{\gamma_{xy}} \right)$

- The stress tensor is a symmetric 3x3 tensor that can be written in different coordinate systems.
- From linear algebra we know that one coordinate system exists in which the tensor only has non-zero elements in its diagonal (everywhere else the components are zero).

$$\overleftrightarrow{\tau} = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{pmatrix} \text{ in principal coord.} \xrightarrow{\text{in principal coord.}} \begin{pmatrix} \sigma_{x'} & \tau_{x'y'} & \tau_{x'z'} \\ \tau_{y'x'} & \sigma_{y'} & \tau_{y'z'} \\ \tau_{z'x'} & \tau_{z'y'} & \sigma_{z'} \end{pmatrix} = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

- The axes of this coordinate system are the *principal axes*
- The elements in the diagonal are the *principal stresses*
- When the stress tensor is represented in its principal coordinate system, there are no shear stresses, only normal stresses

PRINCIPAL STRESSES in 3D

PRINCIPAL AXES $\Leftrightarrow \bar{\sigma}_{ij} = 0$

\Rightarrow STRESS TENSOR in THE PRINCIPAL AXES IS DIAGONAL

$$\bar{\sigma}_{ij} = \begin{pmatrix} \sigma_x & \bar{\sigma}_{xy} & \bar{\sigma}_{xz} \\ \bar{\sigma}_{xy} & \sigma_y & \bar{\sigma}_{yz} \\ \bar{\sigma}_{xz} & \bar{\sigma}_{yz} & \sigma_z \end{pmatrix} \xrightarrow[\text{PRINCIPAL COORDINATES}]{\text{COORDINATES}} \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

Find Eigenvalues:

- CALCULATE CHARACTERISTIC polynomials: $\rho(\lambda) = \det[\mathbf{A} - \lambda \mathbf{I}]$

$$\begin{vmatrix} \sigma_{xx} - \lambda & \tilde{\sigma}_{xy} & \tilde{\sigma}_{xz} \\ \tilde{\sigma}_{xy} & \sigma_{yy} - \lambda & \tilde{\sigma}_{yz} \\ \tilde{\sigma}_{xz} & \tilde{\sigma}_{yz} & \sigma_{zz} - \lambda \end{vmatrix} = (\tilde{\sigma}_{xx} - \lambda) \left\{ (\tilde{\sigma}_{yy} - \lambda)(\sigma_{zz} - \lambda) - \tilde{\sigma}_{yz}^2 \right\} - \tilde{\sigma}_{xy} \left\{ \tilde{\sigma}_{xy} (\tilde{\sigma}_{zz} - \lambda) - \tilde{\sigma}_{xz} \tilde{\sigma}_{yz} \right\} + \tilde{\sigma}_{xz} \left\{ \tilde{\sigma}_{xy} \tilde{\sigma}_{yz} - \tilde{\sigma}_{xz} (\tilde{\sigma}_{yy} - \lambda) \right\}$$

$$\begin{aligned}
 &= (\sigma_{xx} - \lambda) \left\{ \sigma_{yy} \sigma_{zz} - \sigma_{yy} \lambda - \sigma_{zz} \lambda + \lambda^2 - \tilde{\sigma}_{yz}^2 \right\} \\
 &\quad - \tilde{\sigma}_{xy} \left\{ \tilde{\sigma}_{xy} \sigma_{zz} - \tilde{\sigma}_{xy} \lambda - \tilde{\sigma}_{xz} \tilde{\sigma}_{yz} \right\} \\
 &\quad + \tilde{\sigma}_{xz} \left\{ \tilde{\sigma}_{xy} \tilde{\sigma}_{yz} - \tilde{\sigma}_{xz} \sigma_{yy} + \tilde{\sigma}_{xz} \lambda \right\} \\
 &= \sigma_{xx} \sigma_{yy} \sigma_{zz} - \sigma_{xx} \sigma_{yy} \lambda - \sigma_{xx} \sigma_{zz} \lambda + \sigma_{xx} \lambda^2 - \sigma_{xx} \tilde{\sigma}_{yz}^2 \\
 &\quad - \tilde{\sigma}_{yy} \sigma_{zz} \lambda + \sigma_{yy} \lambda^2 + \sigma_{zz} \lambda^2 - \lambda^3 + \tilde{\sigma}_{yz}^2 \lambda \\
 &\quad - \tilde{\sigma}_{xy}^2 \sigma_{zz} + \tilde{\sigma}_{xy}^2 \lambda + \tilde{\sigma}_{xy} \tilde{\sigma}_{xz} \tilde{\sigma}_{yz} \\
 &\quad + \tilde{\sigma}_{xy} \tilde{\sigma}_{xz} \tilde{\sigma}_{yz} - \tilde{\sigma}_{xz}^2 \sigma_{yy} + \tilde{\sigma}_{xz}^2 \lambda
 \end{aligned}$$

$$\begin{aligned}
 &= \lambda \left(-\sigma_{xx} \sigma_{yy} - \sigma_{xx} \sigma_{zz} - \sigma_{yy} \sigma_{zz} + \tilde{\epsilon}_{yz}^2 + \tilde{\epsilon}_{xy}^2 + \tilde{\epsilon}_{xz}^2 \right) \\
 &\quad := -I_2 \\
 &+ \lambda^2 \left(\sigma_{xx} + \sigma_{yy} + \sigma_{zz} \right) \\
 &\quad := I_1 \\
 &\rightarrow I_3
 \end{aligned}$$

$$\begin{aligned}
 &+ \left(\sigma_{xx} \sigma_{yy} \sigma_{zz} - \sigma_{xx} \tilde{\epsilon}_{yz}^2 - \sigma_{zz} \tilde{\epsilon}_{xy}^2 - \sigma_{yy} \tilde{\epsilon}_{xz}^2 + 2 \tilde{\epsilon}_{xy} \tilde{\epsilon}_{xz} \tilde{\epsilon}_{yz} \right) = 0 \\
 &\quad := I_3
 \end{aligned}$$

CHARACT. EQN:

$$\boxed{\lambda^3 - I_1 \lambda^2 + I_2 \lambda - I_3 = 0}$$

I_1, I_2, I_3 are TME STRESS invariants in 3D

Principle stresses in 3D

Calculating the principal stresses

- Calculating the principal stresses equal finding the eigenvalues and eigenvectors of the stress tensor:

$$\det(\overleftrightarrow{\sigma} - \lambda \overleftrightarrow{E}) = 0$$

- When we know the 3D stress state in our reference coordinate system, we can calculate the principal stresses by calculating the roots of the characteristic equation:

$$\sigma^3 - I_1\sigma^2 + I_2\sigma - I_3 = 0$$

- With I_1, I_2, I_3 :

$$\begin{aligned} I_1 &= \sigma_x + \sigma_y + \sigma_z \\ I_2 &= \sigma_x\sigma_y + \sigma_x\sigma_z + \sigma_y\sigma_z - \tau_{xy}^2 - \tau_{xz}^2 - \tau_{yz}^2 \\ I_3 &= \sigma_x\sigma_y\sigma_z + 2\tau_{xy}\tau_{xz}\tau_{yz} - \sigma_x\tau_{yz}^2 - \sigma_y\tau_{xz}^2 - \sigma_z\tau_{xy}^2 \end{aligned}$$

- I_1, I_2, I_3 are the stress invariants.

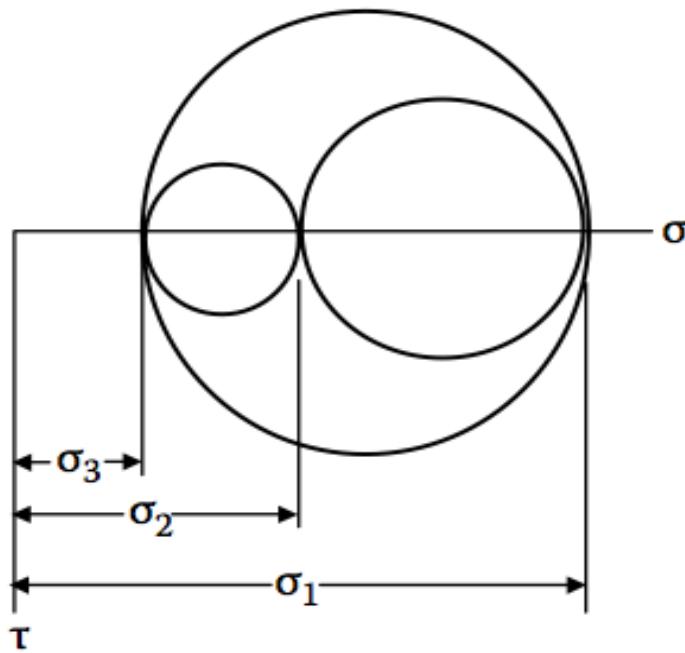
- The stress invariants in the principal axes are then:

$$I_1 = \sigma_1 + \sigma_2 + \sigma_3$$

$$I_2 = \sigma_1\sigma_2 + \sigma_1\sigma_3 + \sigma_2\sigma_3$$

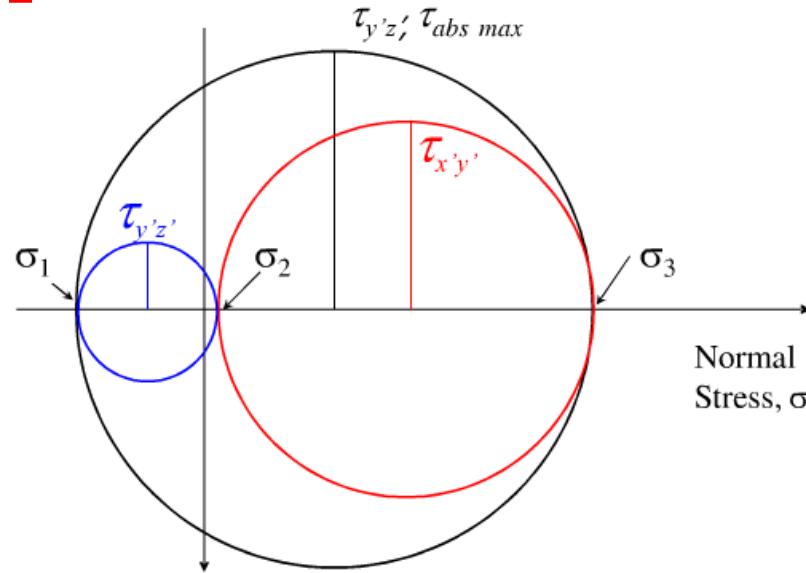
$$I_3 = \sigma_1\sigma_2\sigma_3$$

- With the *eigenvalues* of the 3D stress tensor we can then calculate the Eigenvectors. The Eigenvectors point in the direction of the principal axes of the stress state.



Mohr's circle in 3D

- The stress tensor is dependent only on the stress state, and not on our initial choice of coordinate system.
- We've previously learned to draw the Mohr's circle in 2D. Those were in essence projection of the 3D stress state in 2D
- To get to Mohr's circle in 3D, we can therefore draw three individual Mohr's circles for the planes x-y, x-z, and y-z, as long as we know the principal stresses



$$\tau_{max,3} = \pm \frac{\sigma_1 - \sigma_2}{2}$$

$$\tau_{max,2} = \pm \frac{\sigma_1 - \sigma_3}{2}$$

$$\tau_{max,1} = \pm \frac{\sigma_2 - \sigma_3}{2}$$

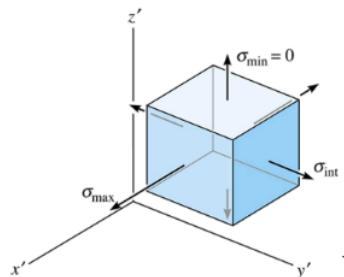
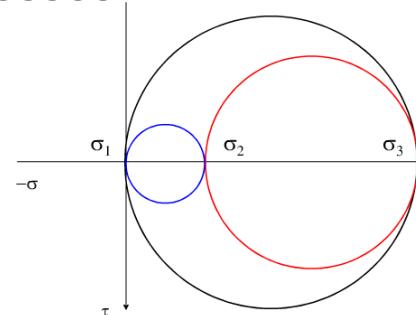
Comment: Sometimes we use the opposite numbering convention $\sigma_3 < \sigma_2 < \sigma_1$

Mohr's circle in 3D- Maximum shear stress

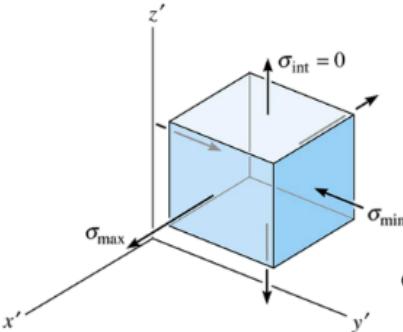
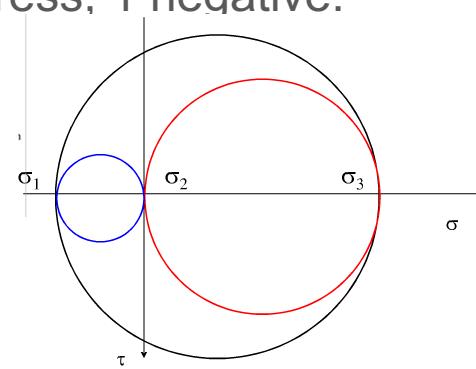
We can use Mohr's circle in 3D to evaluate what the maximum shear stresses are in the 3 principal directions

Mohr's circle in 3D - 3D state of plane stress

- 3D state of plane stress – 2 positive stresses:



- 3D state of plane stress – 1 positive stress, 1 negative:



Example: Triaxial stress state – NOT plane stress

$$\overleftrightarrow{\tau} = \begin{pmatrix} 20 & 40 & -30 \\ 40 & 30 & 25 \\ -30 & 25 & -10 \end{pmatrix} MPa$$

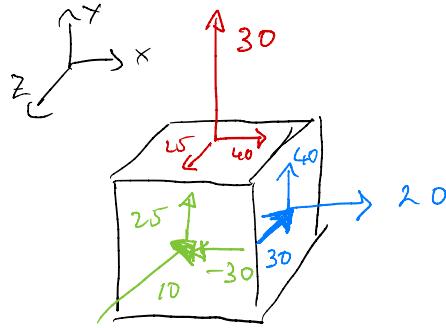
Calculate the maximum principal stresses and maximum shear stresses for the stress state on the left.

Solution:

Calculate stress invariants

Calculate roots of characteristic equation (through a plot)

Extract the maximum shear and principal stresses

EXAMPLE:

$$\underline{\sigma} = \begin{bmatrix} 20 & 40 & -30 \\ 40 & 30 & 25 \\ -30 & 25 & -10 \end{bmatrix}$$

given: STRESS STATE $\underline{\sigma}$

asked:

- I_1, I_2, I_3
- $\sigma_1, \sigma_2, \sigma_3$
- τ_{\max}

Gov. princ.: Eigenvalues of $\underline{\sigma}$:

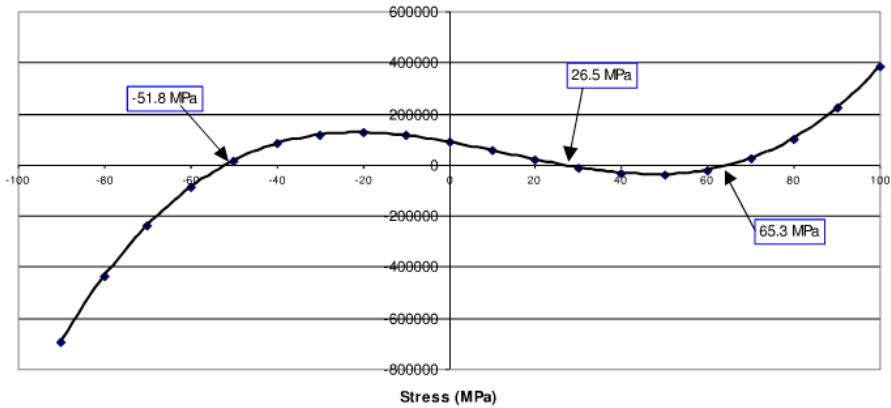
Answer:

$$I_1 = 20 + 30 - 10 = 40$$

$$I_2 = 20 \cdot 30 - 20 \cdot 10 - 30 \cdot 10 - 40 - 30 - 25 = -3025$$

$$I_3 = -20 \cdot 30 \cdot 10 - 2 \cdot 40 \cdot 30 \cdot 25 - 20 \cdot 25 - 30 \cdot 30 + 10 \cdot 40 = -89500$$

charact. polyn: $\sigma^3 - 40\sigma^2 - 3025\sigma + 89500 = 0$



$$\sigma_3 = 65.3 \text{ MPa}$$

$$\sigma_2 = 26.5 \text{ MPa}$$

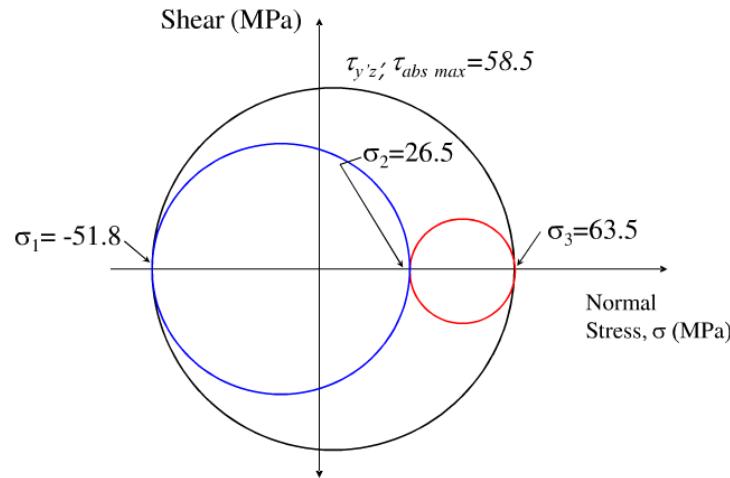
$$\sigma_1 = -51.8 \text{ MPa}$$

$$\tau_{\max} = 1/2(65.3 + 51.8)$$

$$= 58.5 \text{ MPa}$$

Example: Triaxial stress state – NOT plane stress

$$\tau_{\max} = \max \left\{ \left| \frac{\sigma_1 - \sigma_3}{2} \right|, \left| \frac{\sigma_1 - \sigma_2}{2} \right|, \left| \frac{\sigma_2 - \sigma_3}{2} \right| \right\}$$



$$\sigma_3 = 65.3 \text{ MPa}$$

$$\sigma_2 = 26.5 \text{ MPa}$$

$$\sigma_1 = -51.8 \text{ MPa}$$

$$\tau_{\max} = 1/2(65.3 + 51.8)$$

$$= 58.5 \text{ MPa}$$

Example: Triaxial stress state – NOT plane stress